Uncoupling of EphA/ephrinA signaling and spontaneous activity in neural circuit wiring.
نویسندگان
چکیده
Classic studies have proposed that genetically encoded programs and spontaneous activity play complementary but independent roles in the development of neural circuits. Recent evidence, however, suggests that these two mechanisms could interact extensively, with spontaneous activity affecting the expression and function of guidance molecules at early developmental stages. Here, using the developing chick spinal cord and the mouse visual system to ectopically express the inwardly rectifying potassium channel Kir2.1 in individual embryonic neurons, we demonstrate that cell-intrinsic blockade of spontaneous activity in vivo does not affect neuronal identity specification, axon pathfinding, or EphA/ephrinA signaling during the development of topographic maps. However, intrinsic spontaneous activity is critical for axon branching and pruning once axonal growth cones reach their correct topographic position in the target tissues. Our experiments argue for the dissociation of spontaneous activity from hard-wired developmental programs in early phases of neural circuit formation.
منابع مشابه
Modeling Development in Retinal Afferents: Retinotopy, Segregation, and EphrinA/EphA Mutants
During neural development, neurons extend axons to target areas of the brain. Through processes of growth, branching and retraction these axons establish stereotypic patterns of connectivity. In the visual system, these patterns include retinotopic organization and the segregation of individual axons onto different subsets of target neurons based on the eye of origin (ocular dominance) or recep...
متن کاملSrc family kinases are involved in EphA receptor-mediated retinal axon guidance.
EphA receptor tyrosine kinases and their ephrin ligands play important roles in wiring of the developing nervous system. We have investigated here the function of Src family kinases (SFKs) in the retinotectal projection to dissect the signaling pathways by which EphA receptors control actin/microtubule rearrangements that underlie growth cone guidance and collapse. Both EphAs and SFKs are expre...
متن کاملPlasticity of neuron-glial interactions mediated by astrocytic EphARs.
Ephrin (Eph) signaling via Eph receptors affects neuronal structure and function. We report here that exogenous ephrinAs (EphAs) induce outgrowth of filopodial processes from astrocytes within minutes in rat hippocampal slice cultures. Identical effects were induced by release of endogenous ephrinAs by cleavage of their glycosylphosphatidylinositol anchor. Reverse transcription-PCR and immunocy...
متن کاملPolysialylated NCAM and ephrinA/EphA regulate synaptic development of GABAergic interneurons in prefrontal cortex.
A novel function for the neural cell adhesion molecule (NCAM) was identified in ephrinA/EphA-mediated repulsion as an important regulatory mechanism for development of GABAergic inhibitory synaptic connections in mouse prefrontal cortex. Deletion of NCAM, EphA3, or ephrinA2/3/5 in null mutant mice increased the numbers and size of perisomatic synapses between GABAergic basket interneurons and p...
متن کاملModulation of EphA Receptor Function by Coexpressed EphrinA Ligands on Retinal Ganglion Cell Axons
The Eph family is thought to exert its function through the complementary expression of receptors and ligands. Here, we show that EphA receptors colocalize on retinal ganglion cell (RGC) axons with EphA ligands, which are expressed in a high-nasal-to-low-temporal pattern. In the stripe assay, only temporal axons are normally sensitive for repellent axon guidance cues of the caudal tectum. Howev...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 33 46 شماره
صفحات -
تاریخ انتشار 2013